SUPPLEMENTARY MATERIAL: There are now animated illustrations for the spatiotemporal patterns.
![]() |
A book by William H. Calvin UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON 98195-1800 USA |
THE CEREBRAL CODE Thinking a Thought in the Mosaics of the Mind MIT Press copyright ©1996 by William H. Calvin |
Cloning in Cerebral Cortex ![]()
![]() This is the hardest chapter in the whole book. In it, I have to delve into the neuroanatomy and neurophysiology of cortical neurons, importing lessons from such seemingly unrelated subjects as synchronously flashing fireflies. By the end of this chapter, I will have shown how copying could arise in neocortex. By the end of the sixth chapter, the cortical equivalents of all the darwinian essentials and all the accelerating factors will have been examined. But it gets easier, not harder, starting with the fourth chapter.
Neurophysiologists distinguish between cell properties and circuit properties, much as biologists distinguish between genotype and phenotype. Some phenomena are clearly due to the circuit rather than the cells involved, to the wiring rather than the components -- a new property "emerges" from the particular combination. You won't find it in any one neuron. The classical example of an emergent property involves lateral inhibition and it is the reason that Keffer Hartline got a Nobel Prize in 1967. Thanks to local activity contributing to a ring of depression in surrounding neurons, lateral inhibition sharpens up fuzzy boundaries. Compound eyes, the many narrow-angle photoreceptors of which provide an extreme case of fuzzy optics, have a series of inhibitory interconnections that are capable of recreating a light-dark boundary in the environment, restoring much of what was lost.
But lateral inhibition also has a
tendency to produce features where
none exist, illusions such as the Mach bands that you see if looking through a narrow slit
between your fingers. Georg von
Békésy, whose studies of such sideways interactions in the cochlea
were the subject of his 1961 Nobel Prize, also produced illusions
from skin surfaces, to illustrate the generality of the lateral
inhibition principles. Antagonistic surrounds ("Mexican hats") Both the sharpening of fuzzy boundaries and the illusions are emergent properties of a laterally inhibiting neural network. What might be the emergent consequences of lateral excitation?
|
There is good reason to worry about recurrent excitation. It is
potentially regenerative, in the same sense as a string of firecrackers. It is also the most prominent wiring principle of mammalian neocortex.
Furthermore, there are three functional groupings that have become apparent: on the analogy to the mail boxes stacked on many a desk, layer 4 could be said to be the IN box of neocortex, because most of the inputs from the thalamus terminate there. The deep layers could be called the OUT box, as pyramidal neurons of layers 5 and 6 send axons outside the cortex, back to thalamus or down to the spinal cord, and so forth. The neurons of the superficial layers seem to constitute the INTERNAL mailbox of the neocortex, specializing in the interoffice memos. Interactions among the superficial pyramidal neurons are what this book is mostly about, as these neurons seem capable of implementing a darwinian copying competition, one that can shape up quality from humble beginnings.
Those sparsely populated gaps are something like the Sherlock Holmes story about the dog that didn't bark in the night. It took a long time before anyone noticed this fact. In 1975 came the first hint of these gap patterns. In 1982, when Jennifer Lund and Kathleen Rockland first studied the gaps in the superficial layers' intrinsic horizontal connections, it was in the visual cortex of the tree shrew. Though the gap distance varies, we now know that it is a common arrangement for many areas of neocortex, and for many animal species. Thanks to the detailed reconstructions of several HRP-injected superficial pyramidal neurons by Barbara McGuire and her colleagues, we also know that these synaptic connections are likely to be excitatory, probably using glutamate as their neurotransmitter, and that their predominant targets are other superficial pyramidal neurons.
Optical imaging techniques that look down on the brain's surface are now capable of resolving a spread of activity in cortex. Stimulation of a restricted area of retina, of a type that classically would be expected to concentrate cortical activity in only one area of the exposed cortical surface, is now seen to contribute to multiple hot spots of activity at macrocolumnar separations, much as predicted. The neocortical versions of long-term potentiation (LTP) are also concentrated in the superficial layers. We know that N-methyl-d-aspartate (NMDA) types of postsynaptic receptors, which have the unusual characteristic of augmenting their strength when inputs arrive in clusters (such as quasi-synchronously from different sources), are especially common in the superficial layers.
|
Emergent synchrony is well known as a commonplace consequence of recurrent excitation, one that ought to be seen with even
weak connection strengths and short paths. In 1665, the Dutch
physicist Christiaan Huygens noticed that two pendulum clocks
hanging from a common support were synchronized. When he
disturbed the synchrony, it returned within a half hour.
Harmonic oscillators are slower to entrain than nonlinear
relaxation oscillators, which can take just a few cycles. The most famous example of entrainment is probably menstrual cycles in women's dormitories. More dramatic in appearance is a whole tree filled with little lights, flashing in unison. No, I don't mean a Christmas tree wired up, under the control of a single flasher -- there's a natural, wireless example based on hundreds of independent oscillators. The little lights are hundreds of fireflies, and they have no leader to set the pace.
Weak mutual re-excitation (a few percent of threshold) is quite sufficient to entrain; one need not postulate strong connection strengths in the manner needed for Lorente's recirculating chains. So long as the neurons (or fireflies) already have enough input to fire repeatedly, there will be an entrainment tendency if they mutually re-excite one another. And that is exactly what superficial pyramidal neurons, 0.5 mm apart, seem so likely to do. The triple combination -- mutual re-excitation, silent gaps that focus it, and the resulting entrainment tendencies -- is what gives the superficial layers of neocortex the potential of being a Darwin Machine.
|
SUPPLEMENTARY MATERIAL: There are now animated illustrations for the spatiotemporal patterns.
Looking down from on high at the superficial layers of
neocortex, in what the neuroanatomists call "tangential slices," is
like looking down on a forest from a balloon. Any one neuron is
seen in a top-down perspective, orthogonal to that seen from the
side in the usual surface-to-depth slice. Like the branches of any
one tree, any one neuron has a dendritic tree, but also an axon
tree, much as the forest's tree has branching roots below ground.
The axon of a single superficial pyramidal neuron will be seen
to spread in many directions. Though sensory neurons and motor
neurons may vary, the average interneuron sends out as many
synapses as it receives, usually between 2,000 and 10,000. Not
enough radial plots have yet been done to know how symmetric
the horizontal spread is, but it seems clear that the axon branches
travel in many directions from the cell.
The distance from the cell body to the center of the axon terminal cluster, studied mostly in the side views, is not the same in all
cortical areas. That "0.5 mm" mentioned earlier is really as small
as 0.4 mm (in primary visual cortex of monkeys) or as large as 0.85
mm (in sensorimotor cortex). It scales with the width of the basal
dendritic tree. I'll use 0.5 mm as my standard example of this
local metric; it corresponds to a basal dendritic tree of about 0.25
mm spread, which is also about the spread of one cluster of axon
terminals and the extent of one silent gap.
Traces will linger, however, in much the way that blackboards
retain ghostly images of former patterns. The synaptic strengths
should remain changed for a while; indeed, the synchrony-sensitive long-term potentiation of the superficial neocortical
layers suggests that synaptic strength can remain augmented for
many minutes. This will make it easier to recreate the active form
of the triangular array -- perhaps not all of its spatial extent, but
part of it.
|
The lattice connectivity seen in the anatomy, it should be said,
does not fall into neat triangular arrays, measured by distance in
the tangential plane of section. Though the neuroanatomists
speak of "polka-dot" patterns and "lattices" for the axon terminal
clusters in the superficial layers, the spacing of the clusters is only
roughly triangular. Of course, adjusting conduction velocity or
synaptic delay during a tune-up period could make a triangular
array, when replotted as "driving time" rather than distance. But not even an equal conduction time, for converging simultaneously on a potential recruit, is actually required for the present theory. Though exact synchrony has been convenient for introducing the principles, all that triangular arrays require in the long run is a prenatal tune-up period that results in a good-enough self-organization, so that most of the six surrounding nodes produce axon clusters that mutually overlap in a manner that aids entrainment. It may not matter to this self-organizing principle what an external observer would find "regular." I'll stick to triangular array terminology for the theory, but don't expect to find exact triangles in either the anatomy or physiology, only good-enough approximations.
|
From a pair of like-minded cells, we see the possibility of a large
chorus, all singing in synchrony. Furthermore, it's a chorus that
can recruit additional members out on its edges. Like a choir
standing on risers, these singers tend to space themselves so that
each is standing in between two singers on the row below. The
choir isn't as perfect a triangular array as the fruit displays at your
corner grocery, but it's a good enough approximation to the
familiar packing principle. So far, this choir only chants in unison. It's monomaniacal, perhaps only interested in one feature of the stimulus. It's surely not the true Hebbian cell-assembly. The choir corresponding to a concept representation would surely sing in parts, just as sopranos carry one melody and the altos another, each group having different interests. We will need polyphony for harmonious categories, not just chants.
|
![]()
The paperback US edition |